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ABSTRACT

-W6 investigatehe biases of the residuals and the maximum likelihood

parameter estimates from standard, normal-theory nonlinear regression

models. Emphasis is placed on determining the influence of individual cases

on the biases and on understanding how the residual biases can affect the

usefulness of standard diagnostic methods. It is shown that the various bias

expressions in the literature are equivalent, that the biases in nonlinear

regression can be studied usefully in the context of linear regression, and

that diagnostic plots using residuals can be misleading because of substantial

residual biases. For a class of partially nonlinear models, it is shown that

the maximum intrinsic curvature (Bates and Watts 1980) is closely related to

the residual expectations. Finally, the model associated with power

transformations of single explanatory variables in linear regression is

investigated in further detail and several numerical illustrations are

presented. ........ ..... .
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SIGNIFICANCE AND EXPLANATION

The statistical analysis of a collection of data is usually based on a

specified model, a mathematical formula describing the behavior of the data up

to a few unknown parameters which are to be estimated from the data. Much is

known about the statistical behavior of parameter estimates and other

important statistics that arise from analyses based on models that are linear

functions of the parameters, while relatively little is known when the

underlying model is nonlinear in the parameters.

The purpose of this paper is to study the bias of the parameter estimates

and other important statistics that stem from analyses based on nonlinear

models with normal errors.
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BIAS IN NONLINEAR REGRFSSION

R.oD. Cook, C.L. Tsai* and B.C. Wei

1. INTRODUCTION

It is well known that the maximum likelihood estimators of the parameters in standard

nonlinear regression models are generally biased estimators of the true parameter

values. Other quantities that are useful in analyses of nonlinear regression models can

be characterized in the same way. The ordinary residuals, for example, generally have

nonzero expectations and in this sense are also biased.

The past studies of the various biases in nonlinear regression are certainly useful,

but they do not fully exploit recognizable aspects of the structure of the problem in a

way that might facilitate understanding; nor do they emphasize points of view that provide

for an appreciation of the potential importance of the biases in practice. The effects of

residual biases on standard diagnostic plots, for example, are apparently unknown. In

this paper we describe a relatively simple structure for investigating the nature of the

parameter and residual biases in nonlinear regression.

In Section 2, we briefly review the past results on the parameter bias, discuss their

interpretation and use in practice, and show that individual cases can have a substantial

influence on the bias. In Section 3 we investigate the expectation of the residual vector

and related quantities such as the change in the residual expectations that result from

case deletion. In particular, we show that bias in nonlinear regression can be usefully

studied in the context of linear regression.

The transition from linear to fully nonlinear models often seems quite abrupt. This

transition can be smoothed by investigating intermediate, partially nonlinear models. In

Section 4, we study a special class of partially nonlinear models that occurs frequently

in practice and covers many of the illustrative examples in the statistical literature.

For this class of models, interesting relationships occur between the residuals and other

diagnostic statistics. The expectations of the residuals, for example, are shown to be

closely related to the Rates-Watts measure of intrinsic curvature. In the remainder of

this section, we establish notatinn and briefly review relevant backqround material.

*Department of Statistics and Operations Research, New York University, New York, NY 10006.I+Department of Mathematics, Nanjing Institute of Technology, Nanjing, Jiangsu, The People's-Repulic of Cia
Sponsored in pert by the Unitee States Army under Contract No. DAAG29-80-C-0041.
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The standard nonlinear regression model can be represented as

Yi = f(41, 1) 
+ 

ci, i = 1,2,...,n (1)

where Xi represents a vector of known explanatory variables associated with the i-th

observable response yi, I is a p-vector of unknown parameters, the response function

f is assumed to be known, continuous and twice differentiable in I, and the errors are

assumed to be independent, identically distributed normal random variables with mean 0

and variance a For this model, the maximum likelihood estimator 6 of I can be

fo-,d by minimizing the objective function

J(£) = (yi " f( , 8))2 . (2)
i=1

Kennedy and Gentle (1980) discuss computational methods for obtaining 8i for our

purposes we assume that 0 is available. The asymptotic behavior of 8 is investigated

by Wu (1981) who provides additional references. The uoual estimator of

a
2 

is s
2 

. J(;)/(n - p)

For notational convenience, let f . f(Xi' ) i - 1,2,...,n , and let V denote

the n x p matrix with elements fr = af /30r , i - 1,2,...,n, r - 1,2,...,p . Unless

indicated otherwise, all derivatives are evaluated at the true parameter values. Various

quadratic expansions used in the following sections involve the p x p matrices

lei - 1,2,...,n; the elements of )! are f rs a2 3f /a8 a8 r,s,

-i i i rsa

2. SIAS or

Numerous approximations for the bias vector EO - 0 are available in the

literature. Cox and Snell (1968) derive an order n
" I 

approximation for the bias in an

expanded class of models that includes (1) as a special case. Their derivation is based

on a quadratic expansion of the likelihood equations and thus requires third partial

derivatives of the log likelihood. Box (1971) used a quadratic expansion of the residuals

to obtain an approximation for the bias in a multivariate version of (1). For the single

-2-
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response case, Bates and Watts (1980) provide a connection between Box's bias

approximation and their parameter-effects curvature array. More recently, further

approximations for the bias have been offered by Clarke (1980), Hougaard (1981) and Amari

(1982). Clarke and Hougaard deal specifically with model (1) while Amari considers curved

exponential families that include (1) as a special case. Clarke's derivation of the bias

approximation is similar in spirit to that of Cox and Snell (1968), while Hougaard's

result is apparently a straightforward application of Skovgaard (1981).

The derivations of the various bias approximations are based on different notations,

approaches and degrees of generality. Clarke (1980) mentions that his result agrees with

that of Box (1971), but otherwise the relationships between these approximations are

apparently unknown. As shown in the Appendix, these bias approximations are, in fact,

identical for model (1). Further, it is shown that, apart from differences in notation,

the Bates-Watts (1980) form for the bias is the same as that given by Clarke (1980).

A useful numerical study of the bias in various yield-density models is given by

Gillis and Ratkowsky (1978; see also Ratkowsky, 1983) who conclude that the actual bias

(as obtained through simulation) is accurately reflected by the now common bias

approximation.

Since the tias forms discussed above are all equivalent, any of them can be used as

an aid in nonlinear regression analyses. For the purposes of interpretation, however, it

is helpful to exploit the relationship with linear regression: From the Appendix it

follows that the bias approximation b E - can be expressed as

b ( ITv)lvd (3)

2 T' -1
where is an n-vector with elements - a2tr[(V V) -11/2, i - 1,2,...,n. Thus, the

bias b is simply the coefficients from the ordinary least squares regression of 4 on

the columns of Y . Further, A is essentially the expected difference between linear

denote the n-vector with elements i - 1,2,...,n, and expand f(j) about l

_V,(e , ( - 8) + (0 - ,(; - ) (4)
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where F is an n x p x p array with i-th face Wi' i - 1,2,...,n. Multiplication

involving three dimensional arrays is defined as in Rates and Watts (1980) so that the

third term of (4) is an n-vector with elements (8 - 8)T w (8 - 8)/2 , i 1,2,....n.

The expected difference between the linear and quadratic approximations of f(;) is thus

These results indicate that the bias will be small if the elements of g are

sufficiently close to zero, so that the model is essentially linear, or if d is

orthogonal to the tangent plane, i.e. the column space of V

Because k can be simply interpreted as the coefficient vector from an ordinary

least squares regression, we can now employ a variety of the diagnostic methods available

in linear regression to a study of the bias ] in nonlinear regression. In particular,

added variable plots ICook and Weisberg, 1982) for the components of b , or b obtained

by substituting estimates for parameters, may prove to be particularly useful. Further,

the form of k allows for the rather straightforward development of methods for

investigating the effects of individual cases on the determination of b or b.

To investigate the influence of individual cases on b , some additional notation is

required. The subscript (i) means "with the i-th case deleted" so that, for example,

-(i) is the (n-1) x p matrix formed by deleting the i-th row of V and

-(i)" (i)X(il)-V(i) 1(i)"()

To display the effects of deleting the i-th case, we express b (i) as a function of the

full data, as is usual in this kind of investigation. The general methods for doing this

are the same as those used in linear regression, but an added complication arises here

since all the elements of g change when a case is deleted.

Define the n-vector

2 TIVT) w(v v) -1 T-

-i 2 i - hi (7)

4I--4-
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T

where 1, is the i-th row of X and hi is the i-th diagonal element of the tangent

plane hat matrix P - V(VT )-IvT . Further, let 6i and di denote (n - 1) x I vectors

formed by deleting the i-th components from 6 and , respectively. Then

d€) " di + 6i and it follows that

(VV)l-lia i

( - -4 1 - h 8

where is the coefficient vector from the ordinary least squares regression of

6 on Y and a. is the i-th residual from the regression of I + 61 on V

Equation (e,' has several general features in common with well known, analogous

expressions from linear regression. For example, the tangent plane leverage components

hi can be interpreted in much the same way as the leverage components from linear

regression so that remote points on the tangent plane can have a substantial influence on

the bias. The vector 6, reflects the change in the expected difference between linear

and quadratic approximations of L(;) when the i-th case is deleted. If hi is large

then individual components of Li may be large and removal of the i-th case may result in

a substantial change in the agreement between the linear and quadratic approximations.

3. RESIPUAL BIAS

Althouib the errors in model (1) have expectation zero, the expectations of the

residuals s - f( 9) * i " 1,2,...,n, are generally nonzero and in this sense

the residuals are biased.

Taking the expectation on both sides of (4), using ] to approximate E() - , and

using E( - -8) (VTV) yields the following approximation E for the

expectation of the residual vector e - (ei),

This approximation agrees with the results of Cox and Snell (1966).

(iOlv



A useful pattern appears from (3) and (9): From (3) the parameter bias z is simply

the coefficient vector from the ordinary least squares regression of 4 on j , while from

(9) we see that E(L) is just the vector of residuals from this same regression. Other

useful analogies with linear regression can be developed as well: Suppose that f(x, ,)

is to be used as an estimate of fx = f(S, 2
) 

at a point ; that does not occur in the

data. Let vx 
= 

3fx/3 and Wx- 3 2f/32 . Then f(x, 8) - Ef(x, x) d - v 
T
b where

dx  a 2 2tr[(vTv)- w 1/2 is the "response" at j and v Tb is the "estimate" atx --

from the regression of ! on V In such problems, it may be useful to plot d - vTb
-x X-

as a function of X to find if there are regions of substantial bias.

Bates and Watts (1980) express b in terms of the diagonal elements of the faces of

the parameter-effects curvature array T. Similarily, J can be expressed in terms of

an orthonormal basis for the null space of X and the diagonal elements the intrinsic

curvature array, N Let 2 - 9A denote the QR decomposition of and partition

- [ 1j ] where the columns of the n x (n - p) matrix j form an orthonormal basis

for the null space of * Then

2 N- (10)
N 2 i-1

where £1i is an (n - p) x I vector with elements aji i , J , 1,2, ...,n-p, and a

is the i-th diagonal element of the J-th face of the intrinsic curvature array A (In

forming (10) we have used the original rather than scaled data as in Bates and Watts,

1980). Since L depends only on X and the elements of the intrinsic curvature array,

it is invariant under transformations of the parameters, as expected.

The influence of the i-th case on the determination of It can be found by using the

results on b M from Section 2. Let eJ(i) denote the J-th residual based on the data

without the i-th case, J 1,2,...,n, and let dj and 6ij denote the J-th elements of
_T

Sand ,respectively. Then R(ej(i)) d + 6 - XjZ(i) and using (8) it follows
j i~that the change in the residual expectation is

I -6-
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E(ej _ - e ) a 6/ - h - I

where hij is the ij-th element of a . When i = j equation (11) gives the change in

bias of f(x., 1) when the i-th case is deleted,

E(ei( 7 ) h e 1 - e (12)-1 - h i  1- h i Zli)"12

Clearly, remote points on the tangent plane can have a substantial influence on the

average behavior of the residuals. Notice also that 6 T is simply the i-th

residual from the regression of 6 on X .

4. SPECIAL MODELS

4.1 Partially Nonlinear Models.

Further insight into the behavior of the bias can be gained by considering the

partially nonlinear response function

VD)-7 + RUMY (13)

where I is a known, full rank n x (p - 2) matrix, 8T = (JT ,B,Y) and, as indicated,

B and Y are scalars. This class of response functions occurs often in practtce and in

the statistical literature; see, for example, Bates and Watts (1980) Gallant (1975),

Vjlund (1978) and Stone (1980). In particular, (13) allows for transformation of a single

explanatory variable in linear regression. Let , and sr denote n-vectors with

elements gi' 9gi/ay and a2gi/ay 2 , respectively. Application of the results of

Section 2 yields

X 2(y[ , , 00(X) (14)

d - cov(B, Y2)1(y) - O Bvar(y),%(Y) (15)

and

~~~~~T-1 a)V~lT~- -0 cov(6, ;) A 2vrY X Y (16)

where I is the p-th standard basis vector, and var(y) and cov(0,;) are the indicated

large sample variance and covariance, i.e. the appropriate elements of 2 (V V)--

-7-
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VT -1 T
Notice that (_ Z)I is simply the coefficient vector from the regression of

on V and that cov(B,Y) contributes only to the bias of ; .

The behavior of as a function of Y is complicated and difficult to predict.

For the remaining parameters, however, several useful conclusions can be obtained from

(16). First, k does not depend on 2, as expected. Second, as a function of

•and , the bias of each of the components of a and the bias of 8 are

proportional to 2 /B since var(;) is proportional to a2/82 . Third, as a function

2 2 2
of B and , the bias of Y is proportional to a /0 since cov(8,;) is

proportional to a2/8 Clearly, values of 8 close to zero can result in substantially

biased estimators while for sufficiently large values of B the bias will be

negligible. This reinforces the usual empirical notion that a transformation Y an

explanatory variable in linear regression will be well determined only when the r -ssion

coefficient 8 is large relative to a.

The second-order expectation of I for model (13) follows immediately from

-Bvar(Y)(I - P )2 (y) .(17)

2 2
As a function of B and a , Z is proportional to a2/,

There is an interesting relationship between the maximum intrinsic curvature r

(Dates and Watts, 1980) and the residual expectation (17). The maximum intrinsic

curvature can be written as

r - max 2 Sp(18)

where f and f are the acceleration and velocity vectors, respectively, and the maximum

is taken over all directions k - (k i ) EPP . We have added the "hat" to P as a

reminder that all derivatives involved in (18) are evaluated at the maximum likelihood

estimates. !rvaluatinq r for model (13) we find that

2a

r k2BI ,(1 - a)2 -(y),

r ax II'" e4; B vry)> :)(')2/ .(9



I

From (17) and (19) it follows that

i/ rN2V (20)

where 2 is E evaliated at the maximum likelihood estimates. Thus, for model (13) the

maximum intrinsic curvature also describes the length of the vector of estimated residual

biases. This simple relation does not seem to hold for more complicated models.

4.2 Power Transformations of Explanatory Variables.

In this section we investigate the special case of model (13) that corresponds to

selecting a power transformation for a single explanatory variable x in linear

regression. Emphasis is placed on obtaining an understanding of the role that the values

of x have in determining the parameter and residual biases.

The problem of determining a power transformation for a single explanatory variable

can be approached in the framework of model (13) with

gi(y) = g(x,Y) = (x ' - 1)/Y . (21)

We investigate the role of the xi's by modifying (21) to allow for a systematic

alteration of these values. Specifically, for Y * 0 we use g(cxiy) , c > 0 , while

for y = 0 we find it more convenient to use g(xi,Y) • The introduction of the known

constant c is intended to allow for a comparison of a limited number of designs and

should not be confused with rescaling of a common design.
When y = 0 and gi= c(xc ) we find V = clog xi , Oc

2 (-og xi) 2/2] and

qI (x C~ c3  1I  1
g (x-,0) c (log X.) /3 • Next, let b= (b.) and E denote the parameter rid

residual biases, respectively, when a = B = c = 1 . Then a little algebra will verify

that

b a 2b 1/Oc , i = 1,2,...,p-2i i

bp I . 02bI/BC
2  

(22)
* p-1 p-1

and

2 1 2 3b =ob1/8 c
P p

where the biases bp_1  and bp correspond to B and y respectively. Further,

E O2E1/Oc • (23)

- 9-



The results in (22) and (23) suggest that when y - 0 increasing the ratio max xi/min xi

will reduce all biases, with Y benefitting from the greatest reduction. For example,

comparing the designs {xi} and (x2) I we see that the bias for Y from {xiI will be

8 times larger than the bias from {x2 )

When y - 0 and gi = gi(cxi',
Y )

, does not depend on c. Por example the designs

xi and {2xi } will yield the same residual expections when y - 0 .

When Y * 0 we have been unable to find an informative expression for k when using

g(cx ,'). However, when 7 contains a column of I's it is relatively straightforward to

deal with E since the column space of is the same as the column space of

[ x, x log x , and except for the term c Yxy(log x 2 A all addends

comprising 2'
(Y

) = (g"(cxiy)) are contained in the column space of X*. Thus, when

constructing the projection in (17) we may use V* and g"(cxi,Y) = cY x(log xi ) 2

From this it follows that when gi . gi(cxiY)

E0
2 EI/ScY  

(24)

Clearly, the effect of replacing {xi with {cx i  depends strongly on y and c. For

example, when y > 0 the intrinsic curvature for the design {2x II will be smaller than

that for {xi 1 , while when y < 0 the reverse is true.

5. ILLUSTRATIONS

In this section, we present several examples to illustrate selected results of the

previous sections.

To illustrate the nature of the residual bias (9), we use model (13) with q(y)

given by (21), ; - I , n = 20 and xi = 2.2(1)21.2 . Plots of E versus x for

various values of y are shown in Figure 1. For reference, we also give the maximum

iitrinsic curvature r for 0 = 0 = I and each value of y . The values of 94 and the

scales of the y-axes can be converted for other values of a and 0 , and certain other

values for the explanatory variable by using (20), (23) and (24). The plots of I are

clearly patterned, but the display changes in both shape and magnitude as y varies. At

-10



y = - 1, N and the magnitudes of the residual expectations are relatively large, while

at y - 2 the residual expectations seem unim tant.

Box and Hill (1974) describe a weighted analysis based on a linearized version of the

model
08 2 (x12 - x 0/1.632)

I il 2 £x2 + 3 £30

for i = 1,2,...,24. We use this model and the data provided by Box and Hill (1974) to

illustrate the effects of individual cases on the parameter bias. The ordinary least

squares estimate of 8T = (80,... , 3 ) is ;T = (35.9, .071, .038, .167) , and the large

sample estimates of the corresponding standard errors are 8.21, .179, .100 and .416,

respectively. The estimated bias vector, obtained by substituting estimates for

parameters in (3), is i7 - (1.997, .438, .245, 1.02) . Several of these biases are large

relative to the parameter estimates, even when the standard errors are taken into account.

An index plot of the 83 component of is given as Figre 2. Clearly,

cases 20 and 22 play a substantial role in reducing the bias of 83 . Comparing Figure 2

with Figure 3, an index plot of the hi we see that the three cases (20, 22 and 24)

with the largest effects on the bias of 83 also have the three largest values of hi

(see equation 8). Removal of any of these three cases, particularly case 20, would cause

a substantial change in the agreement between the linear and quadratic approximations of

(25). This can be seen, for example, by inspecting the elements of 20 ' which are

substantial, or by comparing the curvatures with and without case 20: I-N - .8
TN T

r T 140.11, r N .12 and r = 352.77

(20 (20)
To illustrate the use of added variable plots associated with the regression in (3),

we use the Michaelis-Menton model f= 8
1x/( 2 + x) in combination with the data from

Bates and Watts (1980). However, for emphasis the first case (x - 2, y - .0615) is

deleted in this example so that there are n - 11 cases. The estimates based on these

data are ; = .08898 , 6 - 1.3668 and s = .00425 . The large sample standard errors

for 8 and 82 are .0165 and .4079, respectively. Figure 4 gives the added variable

plot for 61 The first five points in this plot have two replicates, while the final

-11-



point in the upper, right corner is replicated only once. The clear indication from this

figure is that the outlying point is having a substantial influence on the bias for 0

Further calculation confirms this indication: For the full (11 cases) data

bT . (.0026, .074) while the bias without the outlying case (x - 2, y - .0527) and

evaluated at the estimates from the full data is bT = (.0432, .898) • Also, without the

outlying case e .0990 and e2 = 1.5693 , and the respective large sample standard

errors are .0808 and 1.656. The substantial increase in the standard error of 22

partially accounts for the change in the bias of 62 when the outlying case is removed.

DISCUSSION

The development of diagnostic methods for linear regression is dependent on a

thorough study and characterization of the exact small sample behavior of a few

fundamental building blocks such as the ordinary residuals and related statistics. In

nonlinear regression, the small sample behavior of the corresponding building blocks is

generally intractable so that some degree of approximation is necessary. We have found

the various quadratic approximations in this paper to be useful aids for understanding

selected aspects of nonlinear regression problems. In principle, these approximations can

be extended to a higher accuracy, although the practical usefulness of such extensions is

unclear.

Recall that the residual expectations are strongly dependent on the intrinsic

array A The maximum intrinsic curvatures calculated by Bates and Watts (1980, Table

2), and Ratkowsky (1983) indicate that the residual expectations will generally be

reflection of the intrinsic linearity of statistical models since the illustrations in

Section 5 show that there is no intrinsic reason why the intrinsic curvature cannot be

large.

Finally, the results of this paper are presented from a diagnostic view, but may also

be useful in other contexts. The updating analog of (8), for example, may be useful for

2 -12-



searching the factor space to find a few additional runs that would substantially reduce

the bias.

APPFNDIX

Fquivalence of Bias Approximations

To show the equivalence of the five bias approximations discussed in Section 2, we

develop Cox and Snell's (1968) result for model (1). The approximations of Box (1971),

Clarke (1980), Hougaard (1981) and Amsari (1982) will he obtained at intermediate steps in

this development.

Let m rs, 1,... , denote the elements of = (VT -Iand let Ii  denote

the log likelihood corresponding to the i-th observation from model (1) so that the total

log likelihood is I = .i Here and in the expressions that follow, summations
i

involving the index i are over the integers I to n, while summations involving any

other index are over the integers I to p. We assume that 02 is known when constructing

a.

a Cox and Snell's (1968) bias approximation for 8 a - 1,. .,P , can now be written

as

4
b - (A.)a 2 r t u r tu rtu t,ru

where Krtu  E E3 1/r0t36 u and Jt,ru v (1 /306 M2t( 1 /8ru36 3( i
The approximation error for (A.1) is o(n-t). Evaluating Krtu and Jt,ru for model

(1), we find that

X L (frftu +tfru +ufrt
rtu 2 1 ii i

and

. t ru
t,ru 2 fi I

Substituting these form in (A.1) and simplifying yields

-13-



b 1- re tu (.2)
i r,t,u

Apart from trivial changes in notation, this is Hougaard's (1981) bias approximation.

Next, since

m ftu . tr(MW)

tiu tu i

equation (A.2) can be rewritten as

ir1 rs i 'i

or equivalently
2

b - - H v tr(M W (A.3)

T
where X.i is the i-th row of ) . Apart from notation, equation (A.3) is the bias

approximation derived by Box (1971).

To obtain Clarke's (1980) expression for the bias, we first express (A.3) in full

matrix form

T (A.4)

02
where .4 is an n-vector with elements - - tr(! V ) . Next we express (A.4) in terms of

the QR-decomposition V - , where is a p x p nonsingular, upper triangular

matrix and is n x p with orthogonal columns, U

b - L UTd (A.5)

where L - . The i-th element of A can be represented as

02 T

where dtj is the J-th diagonal element of2 L

2 L Finally, defining 4j to be an n-vector with elements

dij i -1,2,...n, we obtain 

(A.6)

T
which is Clarke's (1980) form. In Clarke's notation, E - JS and B 411 where u

is the t-th coluam of . Further, in the notation of tates and Watts (190),

/8 2j /p 17 jT so that, apart from differences in notation, Clarke's form is the same

-14-



as that given by Bates and Watts.

Amari (1982, Theorem 9) gives the bias of an efficient estimator from a curved

exponential family. For the maximum likelihood estimator Amari's form immediately

reduces to
4 m

b5 8 Mr,teu rs tu tur (A.7)

m

where rtur  is the mixture connection. From the definition of the mixture connection, we

have
at

tur t u r t au ar

For model (I) the second term of the mixture connection equals zero and it is not

difficult to verify that the first term is tl fr/0 2 Substituting this into (A.7)i

yields (A.2) so that for model (1) Amari's bias approximation is equivalent to the four

forms discussed above.

-15-
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